
Zaheer, K. & Akhtar, M. H. Potato production, usage, and nutrition—a review. Crit. Rev. Food Sci. Nutr. 56, 711–721, https://doi.org/10.1080/10408398.2012.724479 (2016).
Andre, C. M. et al. The potato in the human diet: a complex matrix with potential health benefits. Potato Res. 57, 201–214, https://doi.org/10.1007/s11540-015-9287-3 (2014).
Devaux, A., Kromann, P. & Ortiz, O. Potatoes for sustainable global food security. Potato Res. 57, 185–199, https://doi.org/10.1007/s11540-014-9265-1 (2014).
Lutaladio, N. & Castaldi, L. Potato: the hidden treasure. J. Food Compos. Anal. 22, 491–493, https://doi.org/10.1016/j.jfca.2009.05.002 (2009).
Camire, M. E., Kubow, S. & Donnelly, D. J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 49, 823–840, https://doi.org/10.1080/10408390903041996 (2009).
Li, Y. et al. Diverging water-saving potential across China’s potato planting regions. Eur. J. Agron. 134, 126450, https://doi.org/10.1016/j.eja.2021.126450 (2022).
Lun, R., Luo, Q., Gao, M., Li, G. & Wei, T. How to break the bottleneck of potato production sustainable growth—a survey from potato main producing areas in China. Sustainability. 15, 12416, https://doi.org/10.3390/su151612416 (2023).
Gao, Y. L. et al. Current status and management strategies for potato insect pests and diseases in China. Plant Prot. 45, 106–111, https://doi.org/10.16688/j.zwbh.2019353 (2019).
Rondon, S. I. Decoding Phthorimaea operculella (Lepidoptera: Gelechiidae) in the new age of change. J. Integr. Agric. 19, 316–324, https://doi.org/10.1016/s2095-3119(19)62740-1 (2020).
Zhang, M. et al. Chromosomal-level genome assembly of potato tuberworm, Phthorimaea operculella: a pest of solanaceous crops. Scientific Data. 9, 748, https://doi.org/10.1038/s41597-022-01859-5 (2022).
Zehnder, G. W. Timing of Insecticides for Control of Colorado Potato Beetle (Coleoptera: Chrysomelidae) in Eastern Virginia Based on Differential Susceptibility of Life Stages. J. Econ. Entomol. 79, 851–856, https://doi.org/10.1093/jee/79.3.851 (1986).
Ghosh, S. K. & Senapati, S. K. Biology and seasonal fluctuation of Henosepilachna vigintioctopunctata Fabr. on brinjal under Terai region of West Bengal. Indian J Agr Sci. 35, 149–154 (2001).
Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G. & Vernon, R. S. Biology, Ecology, and Control of Elaterid Beetles in Agricultural Land. Annu Rev Entomol. 60, 313–334, https://doi.org/10.1146/annurev-ento-010814-021035 (2015).
Gao, Y. L. & Zhou, W. W. Potato insect pest management. J. Integr. Agric. 19, 311–315, https://doi.org/10.1016/s2095-3119(19)62852-2 (2020).
Wang, C., Xu, H. & Pan, X. B. Management of Colorado potato beetle in invasive frontier areas. J. Integr. Agric. 19, 360–366, https://doi.org/10.1016/S2095-3119(19)62801-7 (2020).
Yang, F. Y., Guo, J. J., Liu, N. & Zhang, R. Z. Genetic structure of the invasive Colorado potato beetle Leptinotarsa decemlineata populations in China. J. Integr. Agric. 19, 350–359, https://doi.org/10.1016/s2095-3119(19)62600-6 (2020).
Xu, Y. & Gray, S. M. Aphids and their transmitted potato viruses: A continuous challenges in potato crops. J. Integr. Agric. 19, 367–375, https://doi.org/10.1016/S2095-3119(19)62842-X (2020).
Zhang, M. D., Yan, J. J., Ali, A. & Gao, Y. l. Potato plant variety affects the performance and oviposition preference of Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Pest Manag. Sci. 78, 3912–3919, https://doi.org/10.1002/ps.6625 (2022).
Brust, G. E. Natural Enemies in Straw-Mulch Reduce Colorado Potato Beetle Populations and Damage in Potato. Biological Control 4, 163–169, https://doi.org/10.1006/bcon.1994.1026 (1994).
Chailleux, A., Mohl, E. K., Teixeira Alves, M., Messelink, G. J. & Desneux, N. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Pest Manag Sci. 70, 1769–1779, https://doi.org/10.1002/ps.3916 (2014).
Liu, C. et al. Using DNA metabarcoding to assess insect diversity in citrus orchards. PeerJ. 11, e15338, https://doi.org/10.7717/peerj.15338 (2023).
Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 24965, https://doi.org/10.1038/srep24965 (2016).
Corlett, R. T. A bigger toolbox: biotechnology in biodiversity conservation. Trends Biotechnol. 35, 55–65, https://doi.org/10.1016/j.tibtech.2016.06.009 (2017).
Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18, https://doi.org/10.1016/j.biocon.2014.11.019 (2015).
Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. P. Roy. Soc. B-Bio.l Sci. 270, S96–99, https://doi.org/10.1098/rsbl.2003.0025 (2003).
Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257, https://doi.org/10.1111/ele.12162 (2013).
Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C. & Baird, D. J. Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 6, e17497, https://doi.org/10.1371/journal.pone.0017497 (2011).
Braukmann, T. W. A. et al. Metabarcoding a diverse arthropod mock community. Mol. Ecol. Resour. 19, 711–727, https://doi.org/10.1111/1755-0998.13008 (2019).
Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8, 1265–1275, https://doi.org/10.1111/2041-210X.12789 (2017).
Hlebec, D., Sivec, I., Podnar, M. & Kučinić, M. DNA barcoding for biodiversity assessment: Croatian stoneflies (Insecta: Plecoptera). PeerJ 10, e13213, https://doi.org/10.7717/peerj.13213 (2022).
Kjærandsen, J. Current state of DNA barcoding of Sciaroidea (Diptera)-highlighting the need to build the reference library. Insects 13, 147, https://doi.org/10.3390/insects13020147 (2022).
Morinière, J. et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol. Ecol. Resour. 19, 900–928, https://doi.org/10.1111/1755-0998.13022 (2019).
Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8, e66213, https://doi.org/10.1371/journal.pone.0066213 (2013).
Hebert, P. D. N. et al. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. Lond. B-Biol. Sci. 371, 20150333, https://doi.org/10.1098/rstb.2015.0333 (2016).
Steinke, D. et al. Message in a bottle—metabarcoding enables biodiversity comparisons across ecoregions. GigaScience 11, giac040, https://doi.org/10.1093/gigascience/giac040 (2022).
Cristescu, M. E. From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol. 29, 566–571, https://doi.org/10.1016/j.tree.2014.08.001 (2014).
Dufresne, Y., Lejzerowicz, F., Perret-Gentil, L. A., Pawlowski, J. & Cordier, T. SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinformatics. 20, 88, https://doi.org/10.1186/s12859-019-2663-2 (2019).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37, 852–857, https://doi.org/10.1038/s41587-019-0209-9 (2019).
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–544, https://doi.org/10.1093/nar/gky379 (2018).
Escudié, F. et al. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 34, 1287–1294, https://doi.org/10.1093/bioinformatics/btx791 (2017).
Ratnasingham, S. mBRAVE: The Multiplex Barcode Research and Visualization Environment. Biodiversity Information Science and Standards 3, e37986, https://doi.org/10.3897/biss.3.37986 (2019).
Ivanova, N. V., Dewaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes. 6, 998–1002, https://doi.org/10.1111/j.1471-8286.2006.01428.x (2006).
Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745, https://doi.org/10.7717/peerj.7745 (2019).
NCBI Sequence Read Archive. https://identifiers.org/ncbi/insdc.sra:SRP538027 (2024).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930, https://doi.org/10.1111/j.1654-1103.2003.tb02228.x (2003).