Fahad, S. et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant. Sci. 8, (2017).
Iorizzo, M., Mengist, M. F. & D’Agostino, N. Perspectives of advanced genetics and genomics approaches to exploit solanum wild crop relatives for breeding. (2021). https://doi.org/10.1007/978-3-030-30343-3_13
Baillo, E. H., Kimotho, R. N., Zhang, Z. & Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10, 771 (2019).
Cai, X. et al. Genome-wide analysis of plant-specific Dof transcription factor family in tomato. J. Integr. Plant. Biol. 55, 552–566 (2013).
Venkatesh, J. & Park, S. W. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato. Plant. Physiol. Biochem. 94, 73–85 (2015).
Kang, W. H., Kim, S., Lee, H. A., Choi, D. & Yeom, S. I. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci. Rep. 6, 33332 (2016).
Wei, Q. et al. Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.). PeerJ 6, e4481 (2018).
Lijavetzky, D., Carbonero, P. & Vicente-Carbajosa, J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol. Biol. 3, 17 (2003).
Wu, Z. et al. Genome-wide identification and expression profile of Dof transcription factor gene family in pepper (Capsicum annuum L.). Front. Plant. Sci. 7, (2016).
Liu, Y. et al. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genom. 21, 276 (2020).
Corrales, A. R. et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant. Cell. Environ. 40, 748–764 (2017).
Shi, Y., Ding, Y. & Yang, S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant. Sci. 23, 623–637 (2018).
Waschburger, E. L. Turchetto-zolet, A. C. DOF gene family expansion and diversification. Genet. Mol. Biol. 3, 1–9 (2023).
Yin, L. et al. Transcription Factor dynamics in cross-regulation of plant hormone signaling pathways. bioRxiv: The preprint server for biology 2023.03.07.531630 (2023).
Wang, Z. et al. Emerging roles of plant DNA-binding with one finger transcription factors in various hormone and stress signaling pathways. Front. Plant. Sci. 13, (2022).
Skirycz, A. et al. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant. J. 56, 779–792 (2008).
Skirycz, A. et al. Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New. Phytol 175, 425–438 (2007).
Skirycz, A. et al. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant. J. 47, 10–24 (2006).
Le Hir, R. & Bellini, C. The plant-specific dof transcription factors family: New players involved in vascular system development and functioning in Arabidopsis. Front. Plant. Sci. 4, (2013).
Kim, H. S. et al. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. Plant. J. 64, 524–535 (2010).
Wu, Q. et al. Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.). BMC Plant. Biol. 17, 166 (2017).
Fornara, F. et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell. 17, 75–86 (2009).
Blair, E. J., Goralogia, G. S., Lincoln, M. J., Imaizumi, T. & Nagel, D. H. Clock-controlled and Cold-Induced CYCLING DOF FACTOR6 alters growth and development in Arabidopsis. Front. Plant. Sci. 13, (2022).
Goralogia, G. S. et al. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant. J. 92, 244–262 (2017).
Zou, X. & Sun, H. DOF transcription factors: specific regulators of plant biological processes. Front. Plant. Sci. 14, (2023).
Carrillo, L. et al. Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions. Front. Plant. Sci. 14, (2023).
Renau-Morata, B. et al. CDF transcription factors: Plant regulators to deal with extreme environmental conditions. J. Exp. Bot. 71, 3803–3815 (2020).
Corrales, A. R. et al. Characterization of tomato Cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J. Exp. Bot. 65, 995–1012 (2014).
Waqas, M. et al. Role of DNA-binding with one finger (Dof) transcription factors for abiotic stress tolerance in plants. Trans. Factors Abiotic Stress Tolerance Plants (2020). https://doi.org/10.1016/B978-0-12-819334-1.00001-0
Ravindran, P., Yong, S. Y., Mohanty, B. & Kumar, P. P. An LRR-only protein regulates abscisic acid-mediated abiotic stress responses during Arabidopsis seed germination. Plant. Cell. Rep. 39, 909–920 (2020).
Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873-3883e12 (2021).
Li, G., Xu, W., Jing, P., Hou, X. & Fan, X. Overexpression of VyDOF8, a Chinese wild grapevine transcription factor gene, enhances drought tolerance in transgenic tobacco. Environ. Exp. Bot. 190, 104592 (2021).
Ramírez Gonzales, L. et al. Potato CYCLING DOF FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought response. Plant. J. 105, 855–869 (2021).
Zhu, X. et al. Calcium-dependent protein kinase 32 gene maintains photosynthesis and tolerance of potato in response to salt stress. Sci. Hortic. 285, 110179 (2021).
Renau-Morata, B. et al. Ectopic expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions. Front. Plant. Sci. 8, (2017).
Xu, J. & Dai, H. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant. Growth Regul. 80, 315–322 (2016).
Domínguez-Figueroa, J. et al. The Arabidopsis transcription factor CDF3 is involved in Nitrogen responses and improves nitrogen use efficiency in tomato. Front. Plant. Sci. 11, (2020).
Kloosterman, B. et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495, (2013).
Yu, B. et al. Relationship between Potato Canopy-air temperature difference and drought tolerance. Acta Agron. Sin. 44, (2018).
Aversano, R. et al. Stochastic changes affect Solanum wild species following autopolyploidization. J. Exp. Bot. https://doi.org/10.1093/jxb/ers357 (2013).
Garramone, R. et al. In vitro assessment of salt stress tolerance in wild potato species. Agronomy 13, 1784 (2023).
Fasano, C. et al. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New. Phytol 210, 1382–1394 (2016).
Aversano, R. et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant. Cell. 27, 954–968 (2015).
Li, Q. et al. Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.). Sci. Rep. 10, 1–19 (2020).
Tiwari, J. K. et al. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci. Rep. 10, 1–18 (2020).
Guo, H. et al. Transcriptome analysis reveals multiple effects of nitrogen accumulation and metabolism in the roots, shoots, and leaves of potato (Solanum tuberosum L.). BMC Plant. Biol. 22, 1–12 (2022).
Jian, H. et al. Construction of drought stress regulation networks in potato based on SMRT and RNA sequencing data. BMC Plant. Biol. 22, 1–17 (2022).
Ponce, O. P. et al. Transcriptome profiling shows a rapid variety-specific response in two Andigenum potato varieties under drought stress. Front. Plant. Sci. 13, 1–20 (2022).
Alvarez-Morezuelas, A., Barandalla, L. & Ritter, E. Transcriptome analysis of two tetraploid potato varieties under water-stress conditions. Int. J. Mol. Sci. 23, 13905 (2022).
Kwenda, S., Motlolometsi, T. V., Birch, P. R. J. & Moleleki, L. N. RNA-seq profiling reveals defense responses in a tolerant potato cultivar to stem infection by Pectobacterium carotovorum ssp. brasiliense. Front. Plant. Sci. 7, (2016).
Woolfson, K. N. et al. Transcriptomic analysis of wound-healing in Solanum tuberosum (potato) tubers: evidence for a stepwise induction of suberin-associated genes. Phytochemistry 206, 113529 (2023).
Yanagisawa, S. Dof domain proteins: Plant-Specific transcription factors associated with diverse phenomena unique to plants. Plant. Cell. Physiol. 45, 386–391 (2004).
Venkatesh, J., Yu, J. W. & Park, S. W. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant. Physiol. Biochem. PPB 73, 392–404 (2013).
Costanzo, S. & Jia, Y. Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa. Plant. Sci. 177, 468–478 (2009).
Macknight, R. et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant. Cell. 14, 877–888 (2002).
Filichkin, S. A. & Mockler, T. C. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes. Biol. Direct 7, 20 (2012).
Smith, C. C. R. et al. Genetics of alternative splicing evolution during sunflower domestication. Proc. Natl. Acad. Sci. USA 115, 6768–6773 (2018).
Gao, H. et al. PIF4 enhances DNA binding of CDF2 to co-regulate target gene expression and promote Arabidopsis hypocotyl cell elongation. Nat. Plants 8, 1082–1093 (2022).
Xu, P., Chen, H. & Cai, W. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep. 21, e48967 (2020).
Shi, L. et al. Aging later but faster: How < scp > StCDF1 regulates senescence in Solanum tuberosum. New. Phytol 242, 2541–2554 (2024).
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).
Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Cho, K. S. et al. The complete chloroplast genome sequences of potato wild relative species, Solanum commersonii. Mitochondrial DNA Part. B 1, 241–242 (2016).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Murashige, T. & Skoog, F. A. Revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).
Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant. Sci. 151, 59–66 (2000).
Singleton, V. L., Orthofer, R. & Lamuela-Ravents, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178 (1998).