
Mishra, T., Raigond, P., Thakur, N., Dutt, S. & Singh, B. Recent updates on healthy phytoconstituents in potato: A nutritional depository. Potato Res. 63, 323–343. https://doi.org/10.1007/s11540-019-09442-z (2020).
Singh, B. et al. Nutrition in Potato and Its Food Products. Syntax of Referencing in Vegetables for Nutrition and Entrepreneurship. 179–201 (Springer Nature Singapore, 2023).
Sampaio, S. L. et al. Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. 103, 118–129. https://doi.org/10.1016/j.tifs.2020.07.015Getrightsandcontent (2020)
Fornal, J. et al. Influence of some chemical modifications on the characteristics of potato starch powders. J. Food Eng. 108, 515–522. https://doi.org/10.1016/j.jfoodeng.2011.09.016 (2012).
Neeraj, Siddiqui, S., Dalal, N., Srivastva, A. & Pathera, A. K. Physicochemical, morphological, functional, and pasting properties of potato starch as a function of extraction methods. J. Food Meas. Charact. 15, 2805–2820. https://doi.org/10.1007/s11694-021-00862-5 (2021).
Chakraborty, I., Mal, N. P., Paul, S. S., Rahman, U. C. & Mazumder, N. M. H., An insight into the gelatinization properties influencing the modified starches used in food industry: A review. Food Bioprocess Tech. 15, 1195–1223. https://doi.org/10.1007/s11947-022-02761-z (2022).
Dupuis, J. H. & Liu, Q. Potato starch: A review of physicochemical, functional and nutritional properties. Am. J. Potato Res. 96, 127–138. https://doi.org/10.1007/s12230-018-09696-2 (2019).
Wang, X. et al. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr. Polym. 240, 116292. https://doi.org/10.1016/j.carbpol.2020.116292 (2020).
Pobereżny, J., Wszelaczyńska, E., Gościnna, K. & Spychaj-Fabisiak, E. Effect of potato storage and reconditioning parameters on physico–chemical characteristics of isolated starch. Starch Stärke 73, 2000019. https://doi.org/10.1002/star.202000019 (2021).
Kaur, A., Singh, N., Ezekiel, R. & Guraya, H. S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem. 101, 643–651. https://doi.org/10.1016/j.foodchem.2006.01.054 (2007).
Alvani, K., Qi, X., Tester, R. F. & Snape, C. E. Physico-chemical properties of potato starches. Food Chem. 125, 958–965. https://doi.org/10.1016/j.foodchem.2010.09.088 (2011).
Phogat, N., Siddiqui, S., Dalal, N., Srivastva, A. & Bindu, B. Effects of varieties, curing of tubers and extraction methods on functional characteristics of potato starch. J. Food Meas. Charact. 14, 3434–3444. https://doi.org/10.1007/s11694-020-00579-x (2020).
Xu, F. et al. Physicochemical and structural characterization of potato starch with different degrees of gelatinization. Foods. 10, 1104. https://doi.org/10.3390/foods10051104 (2021).
Guedes, J. S. et al. Structural modification on potato tissue and starch using ethanol pre-treatment and drying process. Food Struct. 29, 100202. https://doi.org/10.1016/j.foostr.2021.100202 (2021).
Ginter, A., Zarzecka, K., Gugała, M. & Mystkowska, I. The importance of starch with special emphasis on the product of industrial potato processing – Potato starch. Herbalism 9, 135–145. https://doi.org/10.12775/HERB.2023.010 (2023).
Fajardo, D., Haynes, K. G. & Jansky, S. Starch characteristics of modern and heirloom potato cultivars. Am. J. Potato Res. 90, 460–469. https://doi.org/10.1007/s12230-013-9320-5 (2013).
Pobereżny, J. Starch properties used in the determination of the potato technological value. Inż i Ap Chem. 5, 273–274 (2015).
Liszka-Skoczylas, M. Effect of potato plants (Solanum tuberosum L.) fertilization on content and quality of starch in tubers. ŻNTJ 27, 31–46. https://doi.org/10.15193/zntj/2020/122/320 (2020).
Das, S. et al. Evaluation of quality parameters of seven processing type potato (Solanum tuberosum L.) cultivars in the eastern sub-himalayan plains. Foods 10, 1138. https://doi.org/10.3390/foods10051138 (2021).
Wszelaczyńska, E. et al. The effects of fertilizers, irrigation and storage on the properties of potato tubers and their constituent starches. Starch-Stärke 67, 478–492. https://doi.org/10.1002/star.201400196 (2015).
Pszczółkowski, P., Sawicka, B. & Lenartowicz, T. Efficiency irrigation early potato cultivars in three regions of Poland. Fragm. Agron. 33, 97–109 (2016).
Pylak, M., Oszust, K. & Frąc, M. Review report on the role of bioproducts, biopreparations,biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Bio. 18, 597–616. https://doi.org/10.1007/s11157-019-09500-5 (2019).
Mystkowska, I. The effect of the use of biostimulators on dry matter and starch content of tuber potatoes. Fragm. Agron. 36, 45–53 (2019).
Juknevičius, D., Kriaučiuniene, Z., Jasinskas, A. & Šarauskis, E. Analysis of changes in soil organic carbon, energy con-sumption and environmental impact using bio-products in the production of winter wheat and oilseed rape. Sustainability 12, 8246. https://doi.org/10.3390/su12198246 (2020).
Caradonia, F., Ronga, D., Tava, A. & Francia, E. Plant biostimulants in sustainable potato production: An overview. Potato Res. 65, 83–104. https://doi.org/10.1007/s11540-021-09510-3 (2022).
Alamar, M. C., Tosetti, R., Landahl, S., Bermejo, A. & Terry, L. A. Assuring potato tuber quality during storage: A future perspective. Front. Plant. Sci. 8, 283308. https://doi.org/10.3389/fpls.2017.02034 (2017).
Zhang, Y. & Zhen-Xiang, L. Effects of storage temperature and duration on carbohydrate metabolism and physicochemical properties of potato tubers. J. Food Nutr. 7, 1–8. https://doi.org/10.17303/jfn.2021.7.102 (2021).
Galani Yamdeu, J. H., Gupta, P. H., Patel, N. J., Shah, A. K. & Talati, J. G. Effect of storage temperature on carbohydrate metabolism and development of cold-induced sweetening in Indian potato (Solanum tuberosum L.) varieties. J. Food Biochem. 40, 71–83. https://doi.org/10.1111/jfbc.12190 (2016).
Lu, Z. H. Correlation of physicochemical and nutritional properties of dry matter and starch in potatoes grown in different locations. Food Chem. 126, 1246–1253. https://doi.org/10.1016/j.foodchem.2010.12.037 (2011).
Pandey, V., Kumar, V. A. & Brar, A. Biochemical behaviour of potato tubers during storage. Chem. Sci. Rev. Lett. 6, 1818–1822 (2017).
Niu, S. Starch granule sizes and degradation in sweet potatoes during storage. Postharvest Biol. Technol. 150, 137–147. https://doi.org/10.1016/j.postharvbio.2019.01.004 (2019).
Flis, B., Tatarowska, B., Milczarek, D. & Plich, J. Effect of location on starch content and tuber texture characteristics in potato breeding lines and cultivars. Acta Agric. Scand. B Soil. Plant. sci. 67, 453–461. https://doi.org/10.1080/09064710.2017.1299792 (2017).
Islam, M. M. Dry matter, starch content, reducing sugar, color and crispiness are key parameters of potatoes required for chip processing. Horticulturae 8, 362 (2022).
Abong, G. O., Okoth, M. W., Karuri, E. G., Kabira, J. N. & Mathooko, F. M. Evaluation of selected Kenyan potato cultivars for processing into French fries. J. Anim. Plant. Sci. 2, 141–147 (2009).
Šimková, D., Lachman, J., Hamouz, K. & Vokál, B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem. 141, 3872–3880. https://doi.org/10.1016/j.foodchem.2013.06.080 (2013).
Zarzecka, K., Gugała, M., Mystkowska, I. & Sikorska, A. Changes in dry weight and starch content in potato under the effect of herbicides and biostimulants. PSE 67, 202–207. https://doi.org/10.17221/622/2020-PSE (2021).
Dahal, K., Li, X. Q., Tai, H., Creelman, A. & Bizimungu, B. Improving potato stress tolerance and tuber yield under a climate change scenario–A current overview. Front. Plant. Sci. 10, 563. https://doi.org/10.3389/fpls.2019.00563 (2019).
Rymuza, K., Radzka, E. & Lenartowicz, T. Influence of precipitation and thermal conditions on starch content in potato tubers from medium-early cultivars group. J. Ecol. Eng. 16, 176–179. https://doi.org/10.12911/22998993/59367 (2015).
Karak, S., Thapa, U. & Hansda, N. N. Impact of biostimulant on growth, yield and quality of potato (Solanum tuberosum L). Biol. Forum – Int. J. 15, 297–302. https://doi.org/10.13140/RG.2.2.16849.92007 (2023).
Zhang, J. et al. Starch granule size variation and relationship with tuber dry matter content in heritage potato varieties. Sci. Hortic. 130, 503–509. https://doi.org/10.1016/j.scienta.2011.08.006 (2011).
Pobereżny, J. Effect of physicochemical properties of starch on the tendency of potato tuber flesh to darkening and the processed product quality. Starch-Stärke 63, 106–116. https://doi.org/10.1002/star.201000069 (2011).
Romano, A. et al. Microstructure and tuber properties of potato varieties with different genetic profiles. Food Chem. 239, 789–796. https://doi.org/10.1016/j.foodchem.2017.07.010 (2018).
Zabolotets, A., Litvyak, V., Yermakou, A. & Ospankulova, G. Morphological characteristics of starch granules of Eastern and Central European potato varieties (Solanum tuberosum). Ukr. Food J. 8, 18–33. https://doi.org/10.24263/2304-974X-2019-8-1-4 (2019).
Jansky, S. H. & Fajardo, D. A. Tuber starch amylose content is associated with cold-induced sweetening in potato. Food Sci. Nutr. 2, 628–633. https://doi.org/10.1002/fsn3.137 (2014).
Kaur, A., Singh, N., Ezekiel, R. & Sodhi, N. S. Properties of starches separated from potatoes stored under different conditions. Food Chem. 114, 1396–1404. https://doi.org/10.1016/j.foodchem.2008.11.025 (2009).
Ezekiel, R., Rana, G., Singh, N. & Singh, S. Physico-chemical and pasting properties of starch from stored potato tubers. J. Food Sci. Technol. 47, 195–201. https://doi.org/10.1007/s13197-010-0025-1 (2010).
Tang, M. & Liu, Q. The acidity of caustic digested starch and its role in starch adsorption on mineral surfaces. Int. J. Min. Process. 112, 94–100. https://doi.org/10.1016/j.minpro.2012.06.001 (2012).
Trithavisup, K. & Charoenrein, S. Influence of acid treatment on physicochemical properties of aged rice flour. Int. J. Food Prop. 19, 2074–2086. https://doi.org/10.1080/10942912.2015.1104510 (2016).
dos Santos, T. P. R., Leonel, M., de Oliveira, L. A., Fernandes, A. M., Leonel, S. & Da Silva Nunes J.G. Seasonal variations in the starch properties of sweet potato cultivars. Horticulturae 9, 303. https://doi.org/10.3390/horticulturae9030303 (2023).
Wang, W., Zhou, H., Yang, H. & Cui, M. Effects of salts on the freeze-thaw stability, gel strength and rheological properties of potato starch. J. Food Sci. Technol. 53, 3624–3631. https://doi.org/10.1007/s13197-016-2350-5 (2016).
Won, C. et al. Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch. FS&T 37, 321–327. https://doi.org/10.1590/1678-457X.23616 (2017).
Wang, S. J., Zhang, X., Wang, S. & Copeland, L. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Sci. Rep. 6, 28271. https://doi.org/10.1038/srep28271 (2016).
Srichuwong, S., Isono, N., Jiang, H., Mishima, T. & Hisamatsu, M. Freeze–thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydr. Polym. 87, 1275–1279. https://doi.org/10.1016/j.carbpol.2011.09.004 (2012).
Zhang, C., Lim, S. T. & Chung, H. J. Physical modification of potato starch using mild heating and freezing with minor addition of gums. Food Hydrocoll. 94, 294–303. https://doi.org/10.1016/j.foodhyd.2019.03.027 (2019).
Dhital, S., Shrestha, A. K., Flanagan, B. M., Hasjim, J. & Gidley, M. J. Cryo-milling of starch granules leads to differential effects on molecular size and conformation. Carbohydr. Polym. 84, 1133–1140. https://doi.org/10.1016/j.carbpol.2011.01.002 (2011).
Wang, Y., Ma, Y., Gao, X., Wang, Z. & Zhang, S. Insights into the gelatinization of potato starch by in situ1H NMR. RSC Adv. 12, 3335–3342. https://doi.org/10.1039/D1RA08181K (2022).
dos Santos, T. P. R., Leonel, M., Garcia, É. L., do Carmo, E. L. & Franco, C. M. L. Crystallinity, thermal and pasting properties of starches from different potato cultivars grown in Brazil. Int. J. Biol. Macromol. 82, 144–149. https://doi.org/10.1016/j.ijbiomac.2015.10.091 (2016).
Kovač, M. Isolation and characterization of Starch from different potato cultivars grown in Croatia. Appl. Sci. 14, 909. https://doi.org/10.3390/app14020909 (2024).
Skansberger, T. & Kocherbitov, V. The reversible and irreversible phenomena in potato starch gelatinization. Starch – Stärke. 71, 1800233. https://doi.org/10.1002/star.201800233 (2019).
Tong, C., Ma, Z., Chen, H. & Gao, H. Toward an understanding of potato starch structure, function, biosynthesis, and applications. Food Front. 4, 980–1000. https://doi.org/10.1002/fft2.223 (2023).
Pycia, K., Gałkowska, D., Juszczak, L., Fortuna, T. & Witczak, T. Physicochemical, thermal and rheological properties of starches isolated from malting barley varieties. J. Food Sci. Technol. 52, 4797–4807. https://doi.org/10.1007/s13197-014-1531-3 (2015).
Pycia, K., Szupnar-Krok, E., Szostek, M., Pawlakm, R. & Juszczak, L. Effect of soil type and application of ecological fertilizer composed of ash from biomass combustion on selected physicochemical, thermal, and rheological properties of potato starch. Molecules 27, 4318. https://doi.org/10.3390/molecules27134318 (2022).
Noda, T. et al. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 86, 119–125 (2004).
Singh, N., Chawla, D. & Singh, J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chem. 86, 601–608. https://doi.org/10.1016/j.foodchem.2003.10.008 (2004).
Singh, N., Isono, N., Srichuwong, S., Noda, T. & Nishinari, K. Structural, thermal and viscoselastic properties of potato starches. Food Hydrocoll. 22, 979–988. https://doi.org/10.1016/j.foodhyd.2007.05.010 (2008).
Beckles, D. M. & Thitisaksakul, M. How environmental stress affects starch composition and functionality in cereal endosperm. Starch-Stärke 66, 58–71. https://doi.org/10.1002/star.201300212b (2014).
Singh, N. et al. Structural, morphological, thermal, and pasting properties of starches from diverse Indian potato cultivars. Starch-Stärke 70, 1700130. https://doi.org/10.1002/star.201700130 (2018).
Ahmed, S. Fine molecular structure and its effects on physicochemical properties of starches in potatoes grown in two locations. Food Hydrocoll. 97, 105172. https://doi.org/10.1016/j.foodhyd.2019.105172 (2019).
Hu, T. Effects of different altitudes on the structure and properties of potato starch. Front. Plant. Sci. 14, 1111843. https://doi.org/10.3389/fpls.2023.1111843 (2023).
Abel, G. J., Springer, F., Willmitzer, L. & Kossmann, J. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). TPJ 10, 981–991. (1996). https://doi.org/10.1046/j.1365-313X.1996.10060981.x
Ban, X. et al. Expression and biochemical characterization of a thermostable branching enzyme from Geobacillus thermoglucosidans. JMMB 26, 303–311. https://doi.org/10.1159/000446582 (2016).
Zhang, W. Effects of potassium fertilization on potato starch physicochemical properties. Int. J. Biol. Macromol. 117, 467–472. https://doi.org/10.1016/j.ijbiomac.2018.05.131 (2018).
Ebúrneo, J. M. Influence of nitrogen fertilization on the characteristics of potato starch. Aust J. Crop Sci. 12, 365–373. https://doi.org/10.21475/ajcs.18.12.03.pne680 (2018).
Labuschagne, M., Phalafala, L., Osthoff, G. & van Biljon, A. The influence of storage conditions on starch and amylose content of South African quality protein maize and normal maize hybrids. J. Stored Prod. Res. 56, 16–20. https://doi.org/10.1016/j.jspr.2013.11.004 (2014).
Singh, J., McCarthy, O. J., Singh, H. & Moughan, P. J. Low temperature post-harvest storage of New Zealand Taewa (Maori potato): Effects on starch physico-chemical and functional characteristics. Food Chem. 106, 583–596. https://doi.org/10.1016/j.foodchem.2007.06.041 (2008).
Noda, T. et al. Determination of the phosphorus content in potato starch using an energy-dispersive X-ray fluorescence method. Food Chem. 95, 632–637. https://doi.org/10.1016/j.foodchem.2005.02.002 (2006).
Noda, T. Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydr. Polym. 68, 793–796. https://doi.org/10.1016/j.carbpol.2006.08.005 (2007).
Houba, V. J. G., Van der Lee, J. J. & Novozamsky, I. Soil and plant analysis. Part 5B. Soil analysis procedure other procedure. Wageningen Agric. Univ. (1995).
Pietrzak, S. & Hołaj-Krzak, J. T. The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. J. Water Land. Dev. 54, 68–76. https://doi.org/10.24425/jwld.2022.141556 (2022).
American Association of Cereal Chemistry (AACC). Approved Method 44 – 15 A (Moisture-Air Oven Methods) (AACC, 1993).
Zgórska, K. Determination of Starch Content in Potato Tubers. Syntax of Referencing in Monographs and Scientific Dissertations IHAR Radzików. Vol. 10a. 113–116 (2001).
Meredith, P. Large and small starch granules in wheat–Are they really different? Starch-Stärke 33, 40–44 (1981).
PN-84/A-74706. Starchy preparations. Test methods for starchmals. (1984) [In Polish]
CSN 56 0176 Cast.9- Testing Methods for Starch Determination of pH of Starch Water Extract (1982).
Eliasson, A. C., Kim, H. R. & Changes in rheological properties of hydroxypropyl potato starch pastes during freeze-thaw treatments. I. A rheological approach for evaluation of freeze-thaw stability. J. Texture Stud. 23, 279–295. https://doi.org/10.1111/j.1745-4603.1992.tb00526.x (1992).
Standard Methods of the International Association for Cereal Science and Technology. (ICC Standards, ICC, 1999).
Hovenkamp-Hermelink, J. H. M., Adamse, J. N. P., Jacobsen, E., Witholt, B. & Feenstra, W.J. Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 31, 241 (1988).